Peer-reviewed articles 17,970 +



Title: PHYSICO-CHEMICAL REGULARITIES OF FORMATION STRUCTURES OF NON-FIRED GYPSUM MODIFIED STONE

PHYSICO-CHEMICAL REGULARITIES OF FORMATION STRUCTURES OF NON-FIRED GYPSUM MODIFIED STONE
Kirill Petropavlovskii; Victoria Petropavlovskaya; Tatiana Novichenkova; Mihail Sulman; Maria Zavadko
10.5593/sgem2022/4.1
1314-2704
English
22
4.1
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
Gypsum-based materials and products currently deserve special attention from specialists in many industries. They are distinguished by high environmental friendliness, manufacturability and safety. The construction industry is showing additional interest in their increased comfort, reduced sound insulation and thermal insulation. Obtaining crystallization structures directly from gypsum dihydrate using a non-hydration hardening scheme competes with many modern technological approaches. In the production of non-firing gypsum binders, CO2 and other toxic substances are not released into the environment, energy costs are sharply reduced. The control of structure formation of unfired gypsum structures is based on the principles of condensation hardening of compacted powders. As basic analytical regularities, the equations of Thompson (Kelvin), A.N. Shchukarev, A.F. Polak et al. Regulation of dispersion of calcium sulfate dihydrate powders and directed control of structural characteristics is achieved by mathematical modeling of the internal structure of the gypsum matrix. With the introduction of additional finely dispersed aluminumcontaining fillers into the gypsum matrix, an increase in the density of the structure and a significant increase in strength are observed. The gypsum structure with dense packing of grains is characterized by an increase in the area of contacts between crystallite structures. This is reflected in the physical and mechanical characteristics of the modified matrix structure of the composite. The synthesis of non-firing composites with previously unattainable properties is due to the targeted impact on the structure formation of non-hydration systems. An optimal combination of properties is achieved in accordance with the purpose and scope of non-firing materials
[1] Sokov V., Dmitriev N., Obtaining gypsum products from gypsum dihydrate in a microwave field, IOP Conference Series Materials Science and Engineering, vol. 1030, Article 012012, 2021;
[2] Kazanskaya L.F., Smirnova O.M., Supersulphated Cements with Technogenic Raw Materials. International Journal of Civil Engineering and Technology, Russia, vol. 9(11), рр 3006–3012, 2018;
[3] Petropavlovskii K., Novichenkova T., Petropavlovskaya V., Sulman М., Fediuk R., Amran M, Faience waste for the production of wall products, Materials, vol. 14(21), pp 6677, 2021;
[4] Xu Gang, Shi Xianming, Characteristics and applications of fly ash as a sustainable construction material, Resources, Conservation & Recycling, vol. 136, рр 95-109, 2018;
[5] Ovcharenko G.I., Ibe E.E., Sadrasheva A.O., Viktorov A.V., Contact strength of CS-H cement phase with additives, Technique and technology of silicates, Russia, рр 98- 101, 2019;
[6] Carvalho M.A., Calil C., Savastano H., Tubino R., Carvalho M.T., Microstructure and mechanical properties of gypsum composites reinforced with recycled cellulose pulp. Material Research, vol. 11, pp 391-397, 2008;
[7] Buryanov A.F., Galtseva N.A., Morozov I.V., Buldyzhova E.N. Development of the composition of a special mixture for floors using anhydrite binders, Lecture Notes in Civil Engineering, Russia, vol. 160, pp 183-189, 2021;
[8] Vlasova E. Influence of additives on the properties of gypsum molding mixture, Advances in chemistry and chemical technology, Russia, vol. XXXIV/issue 5, рр 18-20, 2020;
[9] Li G.Z., Li J.Q., Guan R.F., Sui S., Liu H.S. Investigation of the water resistance of gypsum materials, ZKG International, vol. 56, pp 87-93, 2003.
This work was supported by the Russian Science Foundation (project No 21-79-30004).
conference
Proceedings of 22nd International Multidisciplinary Scientific GeoConference SGEM 2022
22nd International Multidisciplinary Scientific GeoConference SGEM 2022, 04 - 10 July, 2022
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Turkish Acad Sci.
185-192
04 - 10 July, 2022
website
8594
gypsum waste, metakaolin, hydro-removal fuel ash, strength