|
INFLUENCE THE OUTSIDE THERMAL INSULATION FROM GLASS MICRO BUBBLES ON DAYLIGHT
|
|
|
L. Prokopova;D. Bosova
|
|
|
||
|
|
|
|
1314-2704
|
|
|
||
|
English
|
|
|
18
|
|
|
6.3
|
|
|
|
|
|
||
|
Our paper is focused on translucence of daylight through micro-glass-bubbles. We applied Glass Micro Bubbles as outside thermal insulation on a cargo container and researched their influence on quantity of Daylight in interior. In the roof of the cargo container is a lengthwise roof skylight and its outside surface was coated of this innovative glass material.
We used simple mono-cellular hollow spherical elements, known as the - Glass Micro Bubbles. They are made of borosilicate glass, which is resistant to water and is chemically stable. For this research we chose two identical cargo containers with a lengthwise roof skylight. Our input variables were - thin (2mm) external coating layer of Glass Micro Bubbles. Glass Micro-Bubbles were applied on the whole external surface of one of the container - including a roof skylight. Therefore, it was possible to measure translucence of daylight through the 2 mm layer of Glass Micro Bubbles on these two samples (containers). Our main question is: Is it possible to use this innovative material - Glass Micro Bubbles as outside thermal insulation in order to improve thermal and technical parameters and at the same time not to radically worsen daylighting parameters of indoor environment? |
|
|
conference
|
|
|
||
|
||
|
18th International Multidisciplinary Scientific GeoConference SGEM 2018
|
|
|
18th International Multidisciplinary Scientific GeoConference SGEM 2018, 02-08 July, 2018
|
|
|
Proceedings Paper
|
|
|
STEF92 Technology
|
|
|
International Multidisciplinary Scientific GeoConference-SGEM
|
|
|
Bulgarian Acad Sci; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci & Arts; Slovak Acad Sci; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; World Acad Sci; European Acad Sci, Arts & Letters; Ac
|
|
|
605-610
|
|
|
02-08 July, 2018
|
|
|
website
|
|
|
cdrom
|
|
|
2030
|
|
|
Daylight Factor; daylight; thermal insulation; glass-micro bubbles; indoor environment
|
|