Peer-reviewed articles 17,970 +



Title: THE METHOD OF MOONQUAKES SELENOPHYSICAL PARAMETERS ANALYSIS

THE METHOD OF MOONQUAKES SELENOPHYSICAL PARAMETERS ANALYSIS
Y.A. NEFEDYEV;A.O. ANDREEV;N.Y. DEMINA;S.A. DEMIN;Z. Andreeva
1314-2704
English
17
62
The purpose of the present study is to apply the new methods of multi-parametric analysis to moonquakes. It should be noted such physical phenomena as moonquakes are some kinds of complex systems. As the works in which analysis of moonquakes observations is conducted have shown, lunar seismophysics is much more complex process than Earth's geophysics. This is why to study the physical nature of moonquakes and their parameters it is necessary to use methods of statistical physics and robust estimates. Currently, there are some attempts to study the lunar internal structure based on moonquakes using different seismic methods, such as signal's passage time analysis, tomography techniques, seismic interferometry waves for deep moonquakes in order to conduct backward reflection on "Apollo" mission stations. Based on simulation of tidal lunar parameters which have been improved during the recent space missions, such as GRAIL (gravity), LRO (shape), and LLR (rotation), the presence of lunar internal layer with low viscosity coinciding with the areas where deep moonquakes take place is assumed. The method of moonquakes database analyzing is developed using the author's time series analysis introduced for the Earth's seismics studies based on space observations. The software applications to quantitatively describe parameters of moonquakes dynamic features are developed. A theoretical model for analyzing correlation with the lunar pole dynamics is developed for deep moonquakes. The connection of lunar poles motion dynamics and their uneven rotation with seismic activity has been tested. When developing numerical algorithms and software for moonquakes time series data processing, the modern methods of nonequilibrium statistical physics allowing obtaining a set of statistical parameters and information measures to study the statistical memory effects, periodic patterns, nonstationarity and dynamic intermittency effects, alignment and/or misalignment effects, frequency-phase synchronization from time signals have been used.
conference
17th International Multidisciplinary Scientific GeoConference SGEM 2017
17th International Multidisciplinary Scientific GeoConference SGEM 2017, 29 June - 5 July, 2017
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference-SGEM
Bulgarian Acad Sci; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci & Arts; Slovak Acad Sci; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; World Acad Sci; European Acad Sci, Arts & Letters; Ac
961-966
29 June - 5 July, 2017
website
cdrom
4628
space astrometry; selenodesy; moonquakes; lunar seismophysics; space mission

25th SGEM International Conference on Earth & Planetary Sciences


International GeoConference SGEM2025
27 June - 6 July, 2025 / Albena, Bulgaria

Read More
   

SGEM Vienna GREEN "Green Science for Green Life"


Extended Scientific Sessions SGEM Vienna GREEN
3 -6 December, 2025 / Vienna, Austria

Read More
   

A scientific platform for Art-Inspired Scientists!


The Magical World Where Science meets Art
Vienna, Austria

Read More