Peer-reviewed articles 17,970 +



Title: A SCIENTIFIC AND ENGINEERING APPROACH FOR PLANETARY LAVA TUBES EXPLORATION

A SCIENTIFIC AND ENGINEERING APPROACH FOR PLANETARY LAVA TUBES EXPLORATION
Homero Aguilar Diaz; Gustavo Jamanca-Lino; Yury Vasquez Charcape; Daniel Suarez Zelada
10.5593/sgem2024/6.1
1314-2704
English
24
6.1
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
Lava tubes are natural underground structures formed by volcanoes during magmatic eruption events. Their exploration has aroused undeniable interest in the scientific community because of their potential as future habitats capable of hosting human missions in the Solar System. Indeed, there are significant topographic features that indicate the existence of lava tubes on the Moon and Mars, offering natural shelter and environmental insulation for permanent planetary settlements. The article summarizes the geological process of lava tube formation based on an extensive review of the literature and introduces the relevance of geomechanical prospecting to interpret the surface stability for habitability, introducing the results obtained during the visit to The Hawaii Space Exploration Analog and Simulation (HI-SEAS) base and the region of the Mauna Loa volcano in Hawaii in 2021. The collected data would allow an estimate of the surface properties of these geological formations outside of Earth. In addition, different methodologies currently used in the mining and civil construction industries are discussed that can be transferred as spin-in technologies to complement the characterization of these formations on Earth. In fact, these underground structures are analog environments where it is possible to test different procedures and instruments and develop future space payloads to support the human exploration of the Moon and Mars, with potential terrestrial applications.
[1]. C. Guerra, G. Jamanca Lino, S. Rincon Martinez, E. Rezich, I. Casasbuenas, “Geomechanics on the Moon. A prospecting mission architecture concept”, Proceedings of the International Astronautical Congress, IAC, 2022, 2022-September
[2]. Moon fact sheet. (2024, enero 11). Nasa.gov. https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
[3]. Mars fact sheet. (2024, enero 11). Nasa.gov. https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
[4]. D. Marin, “La radiacion en el espacio”, mar. 2011.
[5]. G.Jamanca-Lino, W. Aoun, E. Roy, C. Carriere, A. Bottge, S. Grand, “REDMARS - Lowering the Perchlorate for agriculture on Mars and In-situ resource utilization”, Proceedings of the International Astronautical Congress, IAC, 2021, A5
[6]. D. Viudez-Moreiras, “The ultraviolet radiation environment and shielding in pit craters and cave skylights on Mars”, Icarus, vol. 370, num. 114658, p. 114658, 2021.
[7]. W. Steigerwald, “NASA’s LRO finds lunar pits harbor comfortable temperatures”, NASA, 26-jul-2022.
[8]. “HIRISE spots the mouth of a martian lava tube –”, NASA Mars Exploration. [Online]. Available: https://mars.nasa.gov/resources/26349/hirise-spots-the-mouth-of-a-martian-lava-tube/.
[9]. M. Detay y B. Hroarsson, “Tuneles de lava. Investigacion. Investigacion y ciencia” (420), 62-67
[10]. J. Lopez Ruiz y J. M. Cebria, “Tipologia de las Lavas generadas en Ambiente Subaereo por las Erupciones Basalticas”, Revista de la sociedad espanola de mineralogia, p. 8, 2014.
[11]. R. B. Bird, W. E. Stewart, y E. N. Lightfoot. Viscosity of Liquids and Gases, 2? edicion, John Wiley & Sons, 2007, pag 10.
[12]. F. Sauro, R. Pozzobon, M. Massironi, P. De Berardinis, T. Santagata, y J. De Waele, “Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology”, Earth Sci. Rev., vol. 209, num. 103288, p. 103288, 2020.
[13]. R. J. Leveille y S. Datta, “Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review”, Planet. Space Sci., vol. 58, num. 4, pp. 592–598, 2010.
[14]. Pedro Luis Ballarin. Biologia-Geologia.com, “Composicion de los magmas”, Biologia-geologia.com.
[15]. G. E. Cushing, “Candidate Cave Entrances on Mars”, 2017.
[16]. M. Musilova, B. Foing, y H. Rogers, “Simulating lava tube exploration research during analog lunar and Martian missions at HI-SEAS in Hawaii”, EGUGA, pp. EGU21-14600, 2021.
[17]. A. Ganser y C. Lavery, Eds., Maritime Mobilities in Anglophone Literature and Culture. Cham: Springer International Publishing, 2023.
[18]. P. G. Node y Washington University, “Alpha particle X-ray spectrometer (APXS)”, Wustl.edu. [Online]. Available: https://an.rsl.wustl.edu/help/Content/About%20the%20mission/MER/Instruments/MER%20APXS.htm. [Consultado: 13-sep-2023].
[19]. “Mini-TES”, Nasa.gov. [Online]. Available : https://mars.nasa.gov/mer/mission/instruments/mini-tes/. [Consultado: 13-sep-2023].
[20]. L.E Hernandez Gutierrez & J.C Santamarta Cereza, Ingenieria geologica en terrenos volcanicos metodos, tecnicas y experiencias en las Islas Canarias. Madrid: Ilustre Colegio Oficial de Geologos, 2015.
[21]. J. C. Melgarejo, J. A. Proenza, y S. Gali y X. LL. Llovet, “Tecnicas de caracterizacion mineral y su aplicacion en exploracion y explotacion minera”, Scielo, 2010.
[22]. A. Russo, I. Vela, E. Hormazabal, “Cuantificacion del Indice de Resistencia Geologica Intacta para Macizos Rocosos en Ambientes Hipogenos”, MassMin, 2020.
[23]. S. Loaiza, G. Rodriguez, y M. Mulas, “Analisis de estabilidad de la cueva volcanica El Mirador de los 2 Tuneles (Islas Galapagos, Ecuador) combinando metodos empiricos, numericos, tecnicas remotas y realidad virtual”, 2022.
[24]. G. Bastidas, O. Soria, M. Mulas, y L. Bordehore, “Analisis de Estabilidad y Riesgos Asociados a las Cuevas Vol- 2 canicas de las Islas Galapagos: comparacion de Metodos Empi- 3 ricos y Numericos”, 2022.
[25]. L. Bermejo et al, “Tecnicas de prospeccion geofisica aplicadas a yacimientos karsticos: Tomografia de Resistividad Electrica (ERT) en el Karst de Ojo Guarena”, 2014.
[26]. K. W. Farries, P. Visintin, S. T. Smith, and P. van Eyk, “Sintered or melted regolith for lunar construction: state-of-the-art review and future research directions,” Constr. Build. Mater., vol. 296, no. 123627, p. 123627, 2021.
[27]. G. Jamanca-Lino, “Concentration of lunar plagioclase for solar cells fabrication. An ISRU conceptual architecture,” in SGEM International Multidisciplinary Scientific GeoConference. EXPO Proceedings, 2023.
[28]. A. Aeroespacial, “El rover Perseverance de la Nasa empieza su busqueda de signos de vida en Marte”, Actualidad Aeroespacial, 22-jul-2021.
[29]. Amazings & NCYT, Ed., Proponen un metodo de analisis rapido para encontrar huellas biologicas en Marte. 2021.
The authors express their gratitude to Dra. Gladys Ocharan for the support in the preliminary characterization of rocks. Also, to the crew Selene IV and the HI-SEAS scientific base operated by the International MoonBase Alliance, and Bader Al Moudah for the photographs. This paper was developed under the support of the ARIES Peruvian research group, a multidisciplinary team who are working on systems engineering for planetary exploration and environmental technologies. Finally, thanks to the Department of Research, Innovation, and Social Responsibility at the Universidad Privada del Norte, Peru; for the support received for the participation in SGEM 2024.
conference
Proceedings of 24th International Multidisciplinary Scientific GeoConference SGEM 2024
24th International Multidisciplinary Scientific GeoConference SGEM 2024, 1 - 7 July, 2024
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Russian Acad Arts; Turkish Acad Sci.
429-440
1 - 7 July, 2024
website
9827
lava tubes, Moon, Mars, human exploration

25th SGEM International Conference on Earth & Planetary Sciences


International GeoConference SGEM2025
27 June - 6 July, 2025 / Albena, Bulgaria

Read More
   

SGEM Vienna GREEN "Green Science for Green Life"


Extended Scientific Sessions SGEM Vienna GREEN
3 -6 December, 2025 / Vienna, Austria

Read More
   

A scientific platform for Art-Inspired Scientists!


The Magical World Where Science meets Art
Vienna, Austria

Read More