Peer-reviewed articles 17,970 +


Altmetrics info


Juris Burlakovs; Jovita Pilecka-Ulcugaceva; Inga Grinfelde; Kristaps Siltumens; Zane Vincevica-Gaile
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
Mineral Processing
Landfill and dump remediation and waste recovery are often needed as circular economy approach is more and more demanding. Complicated solutions are needed to conserve the landfill space as well as overall reduction of the amount of landfilled material is not an easy task because of the different content of contaminants. Primitive soil excavating and transporting to hazardous waste landfills is not the best solution anymore. Series of experiments using landfill mined fine fraction of waste considering complex forming stability of contained copper and lead were performed. Experiments have shown that stability constants overall are enough convincing that inert fine fraction of waste with added soil of various percentage amounts are appropriate for stabilizing the heavy metals. Cation exchange capacity, selective ion electrode potentiometry and extraction experimental procedures were used in order to calculate stability values and determine free exchange cations of Pb and Cu. The fine fraction of waste combined with soil organics are stabilizing Pb and Cu meaning these will not be leaching out from the dumpsite if material is used as biocover.
selective ion potentiometry, biocover quality, heavy metals, leaching, free exchange cations
[1] Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste (consolidated), EUR-Lex, 01999L0031-20180704, pp 1-30, 2018.
[2] Burlakovs J., Kriipsalu M., Arina D., Kaczala F., Shmarin S., Denafas G., Hogland W., Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: The status, SGEM 2013 Conference Proceedings, 1, pp 485-492, 2013.
[3] Burlakovs J., Kriipsalu M., Porshnov D., Jani Y., Ozols V., Pehme, K.-M., Rudovica V., Grinfelde I., Pilecka J., Vincevica-Gaile Z., Turkadze T., Hogland W., Klavins M., Gateway of landfilled plastic waste towards circular economy in Europe, Separations, vol. 6 / issue 2, 25, 2019.
[4] Saaremae E., Liira M., Poolakese M., Tamm T. Removing phosphorus with Ca-Fe oxide granules – a possible wetlands filter material. Hydrology Research, vol. 45, 368- 378. 2014.
[5] Tamm T., Noges T., Jarvet A., Bouraoui F., Contributions of DOC from surface and groundflow into Lake Vortsjarv (Estonia), Hydrobiologia, vol. 599 / issue 1, pp 213- 220, 2008.
[6] Pehme K-M., Orupold K., Kuusemets V., Tamm O., Jani Y., Tamm T., Kriipsalu M. Field Study on the Efficiency of a Methane Degradation Layer Composed of Fine Fraction Soil from Landfill Mining. Sustainability. vol. 12 / issue 15. 2020.
[7] Makijenko J., Burlakovs J., Brizga J., Klavins M., Energy efficiency and behavioral patterns in Latvia, Management of Environmental Quality, vol. 27 / issue 6, pp 695-707, 2016.
[8] Ozola R., Krauklis A., Burlakovs J., Klavins M., Vincevica-Gaile Z., Hogland W., Surfactant-modified clay sorbents for the removal of p-nitrophenol, Clays & Clay Minerals, vol. 67 / issue 2, pp 132-142, 2019.
[9] Krauklis A., Ozola R., Burlakovs J., Rugele K., Kirillov K., Trubaca-Boginska A., Rubenis K., Stepanova V., Klavins M., FeOOH and Mn8O10Cl3 modified zeolites for As (V) removal in aqueous medium, Journal of Chemical Technology & Biotechnology, vol. 92 / issue 8, pp 1948-1960, 2017.
[10] Tilgalis E., Grinberga, L., Energy efficient wastewater treatment technologies in constructed wetlands. Civil Engineering’11 – 3rd International Scientific Conference, vol. 3, pp 263-266, 2011.
[11] Mohsen R.A., Abbassi B., Zytner R., Investigation of fugitive methane and gas collection efficiency in Halton landfill in Ontario, Canada, Environmental Monitoring & Assessment, vol. 192 / issue 6, 326, 2020.
[12] Jalilzadeh H., Hettiaratchi J.P.A., Fleming I., Pokhrel D., Effect of soil type and vegetation on the performance of evapotranspirative landfill biocovers: Field investigations and water balance modeling, Journal of Hazardous, Toxic & Radioactive Waste, vol. 24 / issue 4, 535, 2020.
[13] Pehme K-M., Burlakovs J., Kriipsalu M., Pilecka-Ulcugaceva J., Grinfelde I., Tamm T., Jani Y., Hogland W., Urban hydrology research fundamentals for waste management practices. 160-167. 2019.
[14] Burlakovs J., Gaile Z., Rudovica V., Kriipsalu M., Hogland M., Stapkevica M., Hogland W., Klavins M., Orupold K., Kaczala F., Bhatnagar A., Field-portable X-ray fluorescence spectrometry as rapid measurement tool for landfill mining operations: comparison of field data vs. laboratory analysis. International Journal of Environmental Analytical Chemistry. vol. 95. 2015.
[15] Pehme K-M., Jaarats A., Orupold K., Kriipsalu M., Tamm T., Community forestry on remediated landfill site. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. vol. 18, pp. 203-210. 2018.
The work was supported by PASIFIC program, co-financed by H2020 on the basis of agreement No. 847639 GeoReco project.
Proceedings of 22nd International Multidisciplinary Scientific GeoConference SGEM 2022
22nd International Multidisciplinary Scientific GeoConference SGEM 2022, 04 - 10 July, 2022
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Turkish Acad Sci.
04 - 10 July, 2022