Peer-reviewed articles 17,970 +



Title: APLICATION OF ELLIPTIC INTEGRALS IN MATHEMATICAL CARTOGRAPHY CALCULATIONS

APLICATION OF ELLIPTIC INTEGRALS IN MATHEMATICAL CARTOGRAPHY CALCULATIONS
Pawel Pedzich; Lukasz Wodzynski
10.5593/sgem2023/2.1
1314-2704
English
23
2.1
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
The paper describes examples of applying elliptic integrals in mathematical cartography calculations, i.e. related with cartographic projections and reference surfaces. Selected equations and algorithms used in calculating the meridian arc length on an oblate spheroid, meridian arc length on a tri-axial ellipsoid, the equation and length of the geodesic, and coordinate transformation on an oblate spheroid, have been applied. Examples of elliptic integral application for the construction of cartographic projections of a sphere, oblate spheroid and tri-axial ellipsoid are also presented. Important elements of these equations are elliptic integrals of the first, second and third kind. Methods and tools for solving these integrals are presented, as well as calculations testing the described algorithms and methods. The results have allowed to test the precision of the performed calculations and the efficiency of the applied algorithms. The calculations were made using Octave and Matlab software. Conducted study reveals that obtained results are the same regardless of the method used but some methods are more efficient or convenient to use.
[1] Balcerzak J., Uogolnione odwzorowanie Roussilhe’a powierzchni elipsoidy. Prace naukowe geodezja, 37, Oficyna Wydawnicza Politechniki Warszawskiej, 2000
[2] Byrd P., Friedman M., Handbook of elliptic integrals for engineers and physicists (2nd ed. revised), Springer-Verlag Berlin, Heidelberg New York, 1954
[3] Deetz Ch., Adams O., Elements of map projections with applications to map and charts construction, U.S. Government Printing Office, Washington, 1944
[4] Gdowski B., Odwzorowanie Gaussa-Krugera calej elipsoidy, Geodezja i kartografia, 13(3), 1964
[5] Karney, C.F.F. GeographicLib, Version 1.49 https://geographiclib.sourceforge.io/1.49, 2017
[6] Lee L.P., The transverse mercator Projection of the Entire Spheroid, Empire Survey Review, 12 , London, 1962
[7] Nyrtsov, M. V., Fleis, M. E., Borisov, M. M., Stooke, P. J., Jacobi Conformal Projection of the Tri-axial Ellipsoid: New Projection for Mapping of Small Celestial Bodies. In. M. Buchroithner et al. (eds.). Cartography from Pole to Pole, Lecture Notes in Geoinformation and Cartography. DOI: 10.1007/978-3-642-32618-9_17, Springer- Verlag Berlin Heidelberg, 2014
[8] Panasiuk J., Balcerzak J., Gdowski B., Obliczanie wspolrzednych w odwzorowaniu Gaussa-Krugera w oparciu o aparat funkcji eliptycznych Jacobiego wedlug L. P. Lee (aspekt prosty przeliczania wspolrzednych geodezyjnych B,L na wspolrzedne prostokatne plaskie x,y Gaussa-Krugera), Geodezja i kartografia, 37(307), 1988
[9] Panasiuk J., Balcerzak J., Pokrowska U., Wybrane zagadnienia z podstaw teorii odwzorowan kartograficznych, Oficyna Wydawnicza PW, Warszawa, 1995
[10] Pedzich P., Equidistant map projections of a triaxial ellipsoid with the use of reduced coordinates, Geodesy and cartography, 66(2), (pp. 271-290), DOI: 10.1515/geocart- 2017-0021., 2017
[11] Press W., Teukolsky S., Vetterling W., Flannery B., Numerical Recipes in C, Cambridge University Press, 1992
[12] Weintrit A., So, What is Actually the Distance from the Equator to the Pole? – Overview of the Meridian Distance Approximations, the International Journal on Marine Navigation and Safety of Sea Transportation, 7(2), 2013
conference
Proceedings of 23rd International Multidisciplinary Scientific GeoConference SGEM 2023
23rd International Multidisciplinary Scientific GeoConference SGEM 2023, 03 - 09 July, 2023
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Russian Acad Arts; Turkish Acad Sci.
317-324
03 - 09 July, 2023
website
9120
mathematical cartography, geodesy, cartographic projection, meridian arc length

24th SGEM International Conference on Earth & Planetary Sciences


International GeoConference SGEM2024
28 June - 8 July, 2024 / Albena, Bulgaria

Read More
   

SGEM Vienna GREEN "Green Science for Green Life"


Extended Scientific Sessions SGEM Vienna GREEN
25 - 29 November, 2024 / Vienna, Austria

Read More
   

A scientific platform for Art-Inspired Scientists!


The Magical World Where Science meets Art
Vienna, Austria

Read More