Peer-reviewed articles 17,970 +



Title: ADVANCEMENTS IN WEARABLE THERMOELECTRIC GENERATORS: MATERIALS, DESIGNS, AND MANUFACTURING TECHNIQUES FOR SUSTAINABLE ENERGY HARVESTING

ADVANCEMENTS IN WEARABLE THERMOELECTRIC GENERATORS: MATERIALS, DESIGNS, AND MANUFACTURING TECHNIQUES FOR SUSTAINABLE ENERGY HARVESTING
Cristina Elena Stroe; Teodor Sarbu
10.5593/sgem2023/4.1
1314-2704
English
23
4.1
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
With the increasing interest of people to be informed at every step, to progress and overcome their limits, rapid developments have occurred in the field of IoT (Internet of Things) and miniaturized electronics. Thus, wearable power sources with high reliability and long duty cycles are required to power wearable electronic devices to meet people's needs and smart miniaturized electronics requirements. In addition, to make them truly wearable, these must be light, flexible, silent, low power consumption and adaptable to the human body. Textile materials can meet these requirements, and thermoelectric generators assembled from fibers, filaments, yarns, or fabrics (T-TEG) that allow the generation of thermoelectric energy (TE) from body heat represents a research topic of great interest today. Recent studies have demonstrated that T-TEGs have the potential to provide a sustainable and renewable energy source for a wide range of applications through the use of innovative materials and advanced yet simple manufacturing technologies. The choice of material is an important step in the manufacturing process, and it is essential to consider several factors such as thermoelectric efficiency, cost, processability and scalability. Thus, this paper outlines which methods, designs and materials have been chosen in recent years by researchers for the development and optimization of wearable thermoelectric generators (wTEG).
[1] Hu, E., Kaynak, A. and Li, Y. (2005). Development of a cooling fabric from conducting polymer coated fibres: Proof of concept. Synthetic Metals, 150(2), 139–143. doi:10.1016/j.synthmet.2005.01.018
[2] TELab, Thermoelectrics, available at https://www.telabpostech. com/thermoelectrics-2
[3] Bubnova, O., Ullah Khan, Z., Malti, A., Braun, S., Fahlman, M., Berggren, M., & Crispin, X. (2011). Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). NATURE MATERIALS, 10(6), 429–433. doi:10.1038/nmat3012
[4] Serrano-Claumarchirant, J. F., Nasiri, M. A., Cho, C., Cantarero, A., Culebras, M., Gomez, C. M., Textile-based Thermoelectric Generator Produced Via Electrochemical Polymerization. Adv. Mater. Interfaces 2023, 10, 2202105. doi:10.1002/admi.202202105
[5] Jouhara, H., Zabnienska-Gora, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., et al. (2021). Thermoelectric generator (TEG) technologies and applications. International Journal of Thermofluids, 9, 100063. doi:10.1016/j.ijft.2021.100063
[6] Wang, L., & Zhang, K. (2019). Textile-Based Thermoelectric Generators and Their Applications. ENERGY & ENVIRONMENTAL MATERIALS. doi:10.1002/eem2.12045
[7] Du, Y., Cai, K., Chen, S., Wang, H., Shen, S. Z., Donelson, R., & Lin, T. (2015). Thermoelectric Fabrics: Toward Power Generating Clothing. Scientific Reports, 5(1). doi:10.1038/srep06411
[8] Wu, Q., & Hu, J. (2018). Thermoelectric Textile Materials. Bringing Thermoelectricity into Reality. InTech. doi:10.5772/intechopen.75474
[9] Chatterjee, K., & Ghosh, T. K. (2021). Thermoelectric Materials for Textile Applications. Molecules, 26(11), 3154. doi:10.3390/molecules26113154
[10] Kim, S. J., We, J. H., & Cho, B. J. (2014). A wearable thermoelectric generator fabricated on a glass fabric. Energy & Environmental Science, 7(6), 1959. doi:10.1039/c4ee00242c
[11] Sun, M., Zhang, P., Tang, G., Chen, D., Qian, Q., Yang, Z. (2023). High- Performance n-Type Bi2Te3 Thermoelectric Fibers with Oriented Crystal Nanosheets. Nanomaterials. 13(2):326. doi:10.3390/nano13020326
[12] Cao, Z., Tudor, M. J., Torah, R. N., & Beeby, S. P. (2016). Screen Printable Flexible BiTe–SbTe-Based Composite Thermoelectric Materials on Textiles for Wearable Applications. IEEE Transactions on Electron Devices, 63(10), 4024–4030. doi:10.1109/ted.2016.2603071
[13] Kim, M.-K., Kim, M.-S., Lee, S., Kim, C., & Kim, Y.-J. (2014). Wearable thermoelectric generator for harvesting human body heat energy. Smart Materials and Structures, 23(10), 105002. doi:10.1088/0964-1726/23/10/105002
[14] Landsiedel, J., Root, W., Aguilo-Aguayo, N., Duelli, H., Bechtold, T., & Pham, T. (2021). Multi-Point Flexible Temperature Sensor Array and Thermoelectric Generator Made from Copper-Coated Textiles. Sensors, 21(11), 3742. doi:10.3390/s21113742
[15] Jin, L., Sun, T., Zhao, W., Wang, L., & Jiang, W. (2021). Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application. Journal of Power Sources, 496, 229838. doi:10.1016/j.jpowsour.2021.229838
[16] Amirabad, R., Ramazani Saadatabadi, A., Pourjahanbakhsh, M., Siadati, M.H. (2022). Enhancing Seebeck coefficient and electrical conductivity of polyaniline/carbon nanotube–coated thermoelectric fabric. Journal of Industrial Textiles. 51(2_suppl):3297S-3308S. doi:10.1177/15280837211050516
[17] Ryan, J. D., Lund, A., Hofmann, A. I., Kroon, R., Sarabia-Riquelme, R., Weisenberger, M. C., & Muller, C. (2018). All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns. ACS Applied Energy Materials, 1(6), 2934– 2941. doi:10.1021/acsaem.8b00617
[18] Shin, S., Kumar, R., Roh, J. W., Ko, D.-S., Kim, H.-S., Kim, S. I., et al. (2017). High-Performance Screen-Printed Thermoelectric Films on Fabrics. Scientific Reports, 7(1). doi:10.1038/s41598-017-07654-2
[19] Li, Y., Zeng J., Zhao, Y, Wang, C., Zhang, C., Cheng, T., Tao, J., Li, J., Wang, C., Zhang, L. and Chen, X. (2022). Fabric-based flexible thermoelectric generators: Design methods and prospects. Front. Mater. 9:1046883. doi: 10.3389/fmats.2022.1046883
[20] Morata, A., Pacios, M., Gadea, G., Flox, C., Cadavid, D., Cabot, A., & Tarancon, A. (2018). Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies. Nature Communications, 9(1). doi:10.1038/s41467-018-07208-8
[21] Subramaniam, M. P., Veluswamy, P., Satheesh, A., Arunachalam, G., Kandaswamy, R., Cho, B. J., & A., A. (2021). Electrospun SnO2 and its composite V2O5 nanofibers for thermoelectric power generator. Journal of Sol-Gel Science and Technology, 98(1), 183–192. doi:10.1007/s10971-020-05443-4
[22] Hardianto, H., Mey, G. D., Malengier, B., & Langenhove, L. V. (2020). Textilebased thermoelectric generator fabricated from carbon fibers. Journal of Industrial Textiles, 152808372091068. doi:10.1177/1528083720910686
[23] Xu, H., Guo, Y., Wu, B., Hou, C., Zhang, Q., Li, Y., & Wang, H. (2020). A Highly Integrable Thermoelectric Fiber. ACS Applied Materials & Interfaces. doi:10.1021/acsami.0c09446
[24] Sun, T., Zhou, B., Zheng, Q., Wang, L., Jiang, W., & Snyder, G. J. (2020). Stretchable fabric generates electric power from woven thermoelectric fibers. Nature Communications, 11(1). doi:10.1038/s41467-020-14399-6
[25] Lund, A., Tian, Y., Darabi, S., & Muller, C. (2020). A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources, 480, 228836. doi:10.1016/j.jpowsour.2020.228836
[26] Landsiedel, J., Root, W., Aguilo-Aguayo, N., Duelli, H., Bechtold, T., & Pham, T. (2021). Multi-Point Flexible Temperature Sensor Array and Thermoelectric Generator Made from Copper-Coated Textiles. Sensors, 21(11), 3742. doi:10.3390/s21113742
[27] Schmidl, G., Jia, G., Gawlik, A., Andra, G., Richter, K., & Plentz, J. (2021). Aluminum-doped zinc oxide–coated 3D spacer fabrics with electroless plated copper contacts for textile thermoelectric generators. Materials Today Energy, 21, 100811. doi:10.1016/j.mtener.2021.100811
[28] He, X, Shi, J, Hao, Y, et al. (2022). Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy, 4: 621- 632. doi:10.1002/cey2.186
This work was carried out through the Core Programme within the National Research Development and Innovation Plan 2022-2027, carried out with the support of MCID, project no. 6N/2023, PN 23 26 01 03 (3D-WearIoT) and the participation in the International SGEM Conference within Program 1 - Development of the National R&D System, Subprogram 1.2 - Institutional Performance – RDI excellence funding projects, Contract no. 4 PFE/2021.
conference
Proceedings of 23rd International Multidisciplinary Scientific GeoConference SGEM 2023
23rd International Multidisciplinary Scientific GeoConference SGEM 2023, 03 - 09 July, 2023
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Russian Acad Arts; Turkish Acad Sci.
3-10
03 - 09 July, 2023
website
9170
electronics, wearable power sources, textiles, thermoelectric generators, renewable energy source