Peer-reviewed articles 17,970 +



Title: ANALYSIS OF SALT-SENSITIVE AND SALT-TOLERANT SINORHIZOBIUM MELILOTI STRAINS USING DNA MICROARRAY, PHENOTYPE MICROARRAY AND GENOME MINING TECHNIQUES

ANALYSIS OF SALT-SENSITIVE AND SALT-TOLERANT SINORHIZOBIUM MELILOTI STRAINS USING DNA MICROARRAY, PHENOTYPE MICROARRAY AND GENOME MINING TECHNIQUES
Victoria S. Muntyan; Mariia E. Vladimirova; Alexey M. Afonin; Alexey N. Muntyan; Marina L. Roumiantseva
10.5593/sgem2023/6.1
1314-2704
English
23
6.1
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
Nodule bacteria increase the resistance of host plants to abiotic stress factors; however, the role of the genetic potential of rhizobia in the formation of productive salt-tolerant plant-microbial symbiosis remains underestimated. The aim of the study was to evaluate the pool of genes responsible for the salt tolerance of the alfalfa microsymbiont, Sinorhizobium meliloti, using the DNA microarray technique, phenotype microarray (PM), NGS and NNGS-technologies and genome mining (antismash 5.0). As a result of the analysis of the genomes of strains contrastingly different in salt tolerance, it was found that nucleotide changes in genes in salt-sensitive strains occurred significantly more often in genomic islands located on the chromosome. The genome of the salttolerant strain contained at least 25 genes involved in the DNA replication and repair and metabolism of nucleotides (1 KEGG group), amino acids (8 KEGG groups), lipids (2 KEGG groups), and carbohydrates (4 KEGG groups). Genomic analysis of the saltsensitive strain revealed 2 unique secondary metabolite biosynthesis gene clusters on pSymB (NAGGN) and on the cryptic plasmid (phosphonate and ectoine), while both gene clusters are involved in the synthesis of substances that involved in osmotic stress response. In the genomes of salt-tolerant phenotype strains, changes occurred in a smaller number of genes belonging to other KEGG groups. Two unique clusters of antibiotic synthesis, the class of macrolides (conglobactin) and aminoglycosides (2- deoxystreptamine), as well as an additional cluster of synthesis of thioamitide RiPPs, were identified on the chromosome of a salt-tolerant strain using genome mining. The use of the PM technique made it possible to show that the salt-tolerant strain is resistant to 10 beta-lactam antibiotics, 7 cephalosporins, 9 aminoglycoside antibiotics, 5 tetracyclines, polymyxin E, and 16 antibiotics that block the synthesis of DNA, RNA, enzymes and proteins, while the salt-sensitive strain grew up on alternative sources of organic sulfur and carbon. The revealed characteristics of strains that contrastingly differ in stress tolerance are promising for their use in agrobiotechnology.
[1] Peoples M.B., Ladha J.K., Herridge D.F. Enhancing legume N2 fixation through plant and soil management, Plant and Soil, Netherlands, vol. 174/issue 1-2, pp 83-101, 1995. doi: 10.1007/BF00032242
[2] Stiens M., Becker A., Bekel T., Godde V., Goesmann A., Niehaus K., Schneiker- Bekel S., Selbitschka W., Weidner S., Schluter A., Puhler A. Comparative genomic hybridisation and ultrafast pyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomes of the model strain Rm1021 and the field isolate SM11, Journal of Biotechnology, Netherlands, vol. 136/issue 1-2, pp 31-37, 2008. doi: 10.1016/j.jbiotec.2008.04.014
[3] Schneiker-Bekel S., Wibberg D., Bekel T., Blom J., Linke B., Neuweger H., Stiens M., Vorholter F.J., Weidner S., Goesmann A., Puhler A., Schluter A. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome, Journal of Biotechnology, Netherlands, vol. 155/issue 1, pp 20-33, 2011 doi: 10.1016/j.jbiotec.2010.12.018
[4] Guo H., Sun S., Eardly B., Finan T., Xu J. Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti, Genome, Canada, vol. 52/number 10, pp 862-875, 2009. doi: 10.1139/g09-060
[5] Galardini M., Mengoni A., Brilli M., Pini F., Fioravanti A., Lucas S., Lapidus A., Cheng J.F., Goodwin L., Pitluck S., Land M., Hauser L., Woyke T., Mikhailova N., Ivanova N., Daligault H., Bruce D., Detter C., Tapia R., Han C., Teshima H., Mocali S., Bazzicalupo M., Biondi E.G. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti, BMC Genomics, England, vol. 12, 235, 2011. doi: 10.1186/1471-2164-12-235
[6] Galardini M., Bazzicalupo M., Biondi E., Brambilla E., Brilli M., Bruce D., Chain P., Chen A., Daligault H., Davenport K.W., Deshpande S., Detter J.C., Goodwin L.A., Han C., Han J., Huntemann M., Ivanova N., Klenk H.P., Kyrpides N.C., Markowitz V., Mavrommatis K., Mocali S., Nolan M., Pagani I., Pati A., Pini F., Pitluck S., Spini G., Szeto E., Teshima H., Woyke T., Mengoni A. Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58, Standards in Genomic Sciences, England, vol. 9/issue 2, pp 325-333, 2013. doi: 10.4056/sigs.3797438
[7] Galardini M., Pini F., Bazzicalupo M., Biondi E.G., Mengoni A. Replicondependent bacterial genome evolution: the case of Sinorhizobium meliloti, Genome Biology and Evolution, England, vol. 5/issue 3, pp 542-558. 2013. doi: 10.1093/gbe/evt027
[8] Sugawara M., Epstein B., Badgley B.D., Unno T., Xu L., Reese J., Gyaneshwar P., Denny R., Mudge J., Bharti A.K., Farmer A.D., May G.D., Woodward J.E., Medigue C., Vallenet D., Lajus A., Rouy Z., Martinez-Vaz B., Tiffin P., Young N.D., Sadowsky M.J. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies, Genome Biology, England, vol. 14/issue 2, R17, 2013. doi: 10.1186/gb-2013-14-2-r17
[9] Wu L., Liu X., Fields M.W., Thompson D.K., Bagwell C.E., Tiedje J.M., Hazen T.C., Zhou J. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness, The ISME Journal, England, vol. 2/issue 6, pp 642-655, 2008. doi: 10.1038/ismej.2008.23
[10] Vincent J.M. Serological studies of the root-nodule bacteria. I. Strains of Rhizobium meliloti, Proceedings of The Linnean Society of New South Wales, Australia, vol. 66, pp 145-154, 1941.
[11] Ibragimova M.V., Rumiantseva M.L., Onishchuk O.P., Belova V.S., Kurchak O.N., Andronov E.E., Dziubenko N.I., Simarov B.V. Symbiosis between the nodule bacterium Sinorhizobium meliloti and alfalfa (Medicago sativa) under salinization conditions, Microbiology, Russia, vol. 75/issue 1, pp 94-100, 2006.
[12] Greene S.L., Kisha T.J., Dzyubenko N.I. Conserving alfalfa wild relatives: Is past introgression with Russian varieties evident today? Crop Science, United States, vol. 48/issue 5, pp 1853-1864, 2008.
[13] Roumiantseva M.L., Vladimirova M.E., Saksaganskaia A.S., Muntyan V.S., Kozlova A.P., Afonin A.M., Baturina O.A., Simarov B.V. Ensifer meliloti L6-AK89, an effective inoculant of Medicago lupulina varieties: phenotypic and deep-genome screening, Agronomy, Switzerland, vol. 12/issue 4, 766, 2022, doi: 10.3390/agronomy12040766
[14] Molina-Sanchez M.D., Lopez-Contreras J.A., Toro N., Fernandez-Lopez M. Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region. SpringerPlus, Switzerland, vol. 4, 259, 2015. doi: 10.1186/s40064-015- 1062-z
[15] Biondi E.G., Tatti E., Comparini D., Giuntini E., Mocali S., Giovannetti L., Bazzicalupo M., Mengoni A., Viti C. Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype MicroArray analysis, Applied and Environmental Microbiology, United States, vol. 75/number 16, pp 5396-5404, 2009. doi: 10.1128/AEM.00196-09
[16] Gouffi K., Blanco C. Is the accumulation of osmoprotectant the unique mechanism involved in bacterial osmoprotection? International Journal of Food Microbiology, Netherlands, vol. 55/issue 1-3, pp 171-174, 2000. doi: 10.1016/s0168-1605(00)00192-6
[17] Sagot B., Gaysinski M., Mehiri M., Guigonis J.M., Le Rudulier D., Alloing G. Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria, Proceedings of the National Academy of Sciences of the United States of America, USA, vol. 107/number 28, pp 12652-12657, 2010. doi: 10.1073/pnas.1003063107
The study was carried out within the framework of the State Assignment No. FGEW- 2021-0006.
conference
Proceedings of 23rd International Multidisciplinary Scientific GeoConference SGEM 2023
23rd International Multidisciplinary Scientific GeoConference SGEM 2023, 03 - 09 July, 2023
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Turkish Acad Sci.
129-136
03 - 09 July, 2023
website
9227
Sinorhizobium meliloti, salt tolerance, DNA microarray, phenotype microarray, clusters of secondary metabolite biosynthesis