Peer-reviewed articles 17,970 +



Title: BIOMASS UTILIZATION AS SUSTAINABLE ENERGETIC ROOT

BIOMASS UTILIZATION AS SUSTAINABLE ENERGETIC ROOT
Simona Gavrila? ; Eugenia ?igan ; Oana Brinzan; Radu-Lucian Blaga
10.5593/sgem2023v/4.2
1314-2704
English
23
4.2
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
The effect of climate change on current life is becoming more visible daily. Our capacity to be resilient to these changes is an act of responsibility for the future. Several directions could serve this purpose. The present study aims to determine the current state of the art in unconventional energy sources. Mainly, the focus will be on biomass. Biopower sources are an element of renewable energy alternatives, along with solar, wind, tide, wave, ocean, and geothermal. The statistics underline an increasing trend of these resource contributions to the total power input. The paper aims to determine the benefits of utilizing biomass as a renewable energy alternative. The key characteristics of such an approach will be examined, emphasizing their advantages and the potential for enhancing performance. There were limitations in accessing valuable information from the field. Through it, biomass-type resources present an increased interest due to their particular property to act in a double sense, unlike the other non-traditional ones. The extent of their application will be ascertained based on the available data.
[1.] Ripple, W.J.; Wolf, C.; Lenton, T.M.; Gregg, J.W.; Natali, S.M.; Duffy, P.B.; Rockstrom, J.; Schellnhuber, H.J. Many risky feedback loops amplify the need for climate action. One Earth 2023, 6, 86-91, doi:https://doi.org/10.1016/j.oneear.2023.01.004.
[2.] Rogelj, J.; Forster, P.M.; Kriegler, E.; Smith, C.J.; Seferian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 2019, 571, 335-342, doi:https://doi.org/10.1038/s41586-019-1368-z
[3.] Forster, P.M.; Smith, C.J.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.; Palmer, M.D.; et al. Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2023, 15, 2295-2327, doi:https://doi.org/10.5194/essd-15-2295-2023.
[4.] Casau, M.; Dias, M.F.; Matias, J.C.; Nunes, L.J. Residual biomass: a comprehensive review on the importance, uses and potential in a circular bioeconomy approach. Resources 2022, 11, 35, doi:https://doi.org/10.3390/resources11040035.
[5.] Tudge, S.J.; Purvis, A.; De Palma, A. The impacts of biofuel crops on local biodiversity: a global synthesis. Biodiversity Conservation 2021, 30, 2863-2883, doi:https://doi.org/10.1007/s10531-021-02232-5.
[6.] Ieropoulos, I.; Greenman, J. The future role of MFCs in biomass energy. Frontiers in Energy Research 2023, 11, 1108389, doi:https://doi.org/10.3389/fenrg.2023.1108389.
[7.] Hoogwijk, M.; Faaij, A.; Van Den Broek, R.; Berndes, G.; Gielen, D.; Turkenburg, W. Exploration of the ranges of the global potential of biomass for energy. Biomass bioenergy 2003, 25, 119-133, doi:http://dx.doi.org/10.1016/S0961-9534(02)00191-5.
[8.] Buffi, M.; Prussi, M.; Scarlat, N. Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives. Biomass and Bioenergy 2022, 165, 106556, doi:https://doi.org/10.1016/j.biombioe.2022.106556.
[9.] Hiloidhari, M.; Sharno, M.A.; Baruah, D.; Bezbaruah, A.N. Green and sustainable biomass supply chain for environmental, social and economic benefits. Biomass Bioenergy 2023, 175, 106893, doi:https://doi.org/10.1016/j.biombioe.2023.106893.
[10.] Smyth, C.; Hudson, B.; Metsaranta, J.; Howard, C.; Fellows, M.; Kurz, W. Firekilled forest biomass for mills and communities and bioenergy GHG impacts. Biomass Bioenergy 2023, 175, 106877, doi:https://doi.org/10.1016/j.biombioe.2023.106877.
[11.] Clifton-Brown, J.; Hastings, A.; von Cossel, M.; Murphy-Bokern, D.; McCalmont, J.; Whitaker, J.; Alexopoulou, E.; Amaducci, S.; Andronic, L.; Ashman, C. Perennial biomass cropping and use: Shaping the policy ecosystem in European countries. GCB Bioenergy 2023, doi:https://doi.org/10.1111/gcbb.13038.
[12.] Tiwari, S.; Ahmed, W.; Sarkar, B. Multi-item sustainable green production system under trade-credit and partial backordering. Journal of cleaner production 2018, 204, 82-95, doi:https://doi.org/10.1016/j.jclepro.2018.08.181.
[13.] Nunes, L.; Causer, T.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renewable Sustainable Energy Reviews 2020, 120, 109658, doi:https://doi.org/10.1016/j.rser.2019.109658.
[14.] Liu, M.; Sun, Z.; Li, Q.; Wei, Z.; Liang, B. Driving and Influencing Factors of Biomass Energy Utilization from the Perspective of Farmers. International Journal of Heat Technology 2021, 39, doi:https://doi.org/10.18280/ijht.390130
[15.] Ma, L.; Yu, J.; Zhang, L. An analysis on barriers to biomass and bioenergy development in rural China using intuitionistic fuzzy cognitive map. Energies 2019, 12, 1598, doi:https://doi:10.3390/en12091598.
[16.] Cheah, W.Y.; Er, A.C.; Aiyub, K.; Yasin, N.H.M.; Ngan, S.L.; Chew, K.W.; Khoo, K.S.; Ling, T.C.; Juan, J.C.; Ma, Z. Current status and perspectives of algae-based bioplastics: A reviewed potential for sustainability. Algal Research 2023, 103078, doi:https://doi.org/10.1016/j.algal.2023.103078.
[17.] Ullah, Z.; Elkadeem, M.; Kotb, K.M.; Taha, I.B.; Wang, S. Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply. Renewable Energy 2021, 179, 885-910, doi:https://doi.org/10.1016/j.renene.2021.07.063.
[18.] Zappa, W.; Junginger, M.; Van Den Broek, M. Is a 100% renewable European power system feasible by 2050? Applied energy 2019, 233, 1027-1050, doi:https://doi.org/10.1016/j.apenergy.2018.08.109.
[19.] Lozano, F.J.; Lozano, R.; Lozano-Garcia, D.F.; Flores-Tlacuahuac, A. Reducing energy poverty in small rural communities through in situ electricity generation. Discover Sustainability 2023, 4, 13, doi:https://doi.org/10.1007/s43621-023- 00128-8.
The study is intended as a deepening activity in the ERASMUS+, Project 2019-3- TR01-KA205-080177-”Green Thinking Entrepreneur Youth” to support the young in designing possible ecological alternatives in their entrepreneurial approach. The project funds supported attendance at the SGEM Conference 2023 in the framework of dissemination activity.
conference
Proceedings of 23rd International Multidisciplinary Scientific GeoConference SGEM 2023
23rd International Multidisciplinary Scientific GeoConference SGEM 2023, 28-30 November, 2023
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference-SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Russian Acad Arts; Turkish Acad Sci.
423-430
28-30 November, 2023
website
9477
renewable resources, agriculture crops, green power, cogeneration systems, durable exploitation

24th SGEM International Conference on Earth & Planetary Sciences


International GeoConference SGEM2024
28 June - 8 July, 2024 / Albena, Bulgaria

Read More
   

SGEM Vienna GREEN "Green Science for Green Life"


Extended Scientific Sessions SGEM Vienna GREEN
25 - 29 November, 2024 / Vienna, Austria

Read More
   

A scientific platform for Art-Inspired Scientists!


The Magical World Where Science meets Art
Vienna, Austria

Read More