Peer-reviewed articles 17,970 +



Title: FISHER-X: AN ENGINEERING CONCEPT TO MONITOR WATER ENVIRONMENTS USING ROBOTIC BIOMIMICRY

FISHER-X: AN ENGINEERING CONCEPT TO MONITOR WATER ENVIRONMENTS USING ROBOTIC BIOMIMICRY
Yury Vasquez-Charcape; Gustavo Jamanca-Lino; David Sanchez-Perez; Bruno Cevallos
10.5593/sgem2024/3.1
1314-2704
English
24
3.1
•    Prof. DSc. Oleksandr Trofymchuk, UKRAINE 
•    Prof. Dr. hab. oec. Baiba Rivza, LATVIA
Human activities have significantly impacted aquatic ecosystems worldwide, especially in developing countries. Acid mine drainage from mineral extraction and wastewater containing xenobiotics pose substantial threats for lakes and marine ecosystems, introducing heavy metals and increasing antibiotic resistance in pathogenic microbes. Despite the urgent need for effective solutions, many environmental liabilities remain without an adequate mapping unmapped or remediation plan, exacerbating risks for environmental health. To address these challenges, our team proposes FISHER-X, a biomimetic robot inspired by the hadal snailfish Pseudoliparis swirei. This innovative technological tool is designed to support integrative studies and monitor water bodies near industrial facilities, particularly mining units. FISHER-X's proposed capabilities make it a suitable tool for assessing polluted and hazardous environments. This paper presents the conceptual design of FISHER-X, including fundamental equations for engineering design, motion mechanisms based on computational simulation, and a proposed validation test. Potential applications extend beyond conventional environmental monitoring, such as habitability surveys, life detection, and physicochemical characterization and mapping of aquatic environments on Earth and beyond.
[1] B. Cevallos, G. Jamanca-Lino, J. L. N. Herrera, A. Flores, and &. Y. Vasquez, “FISHER-X: A Bioinspired Robotic Alternative for The Exploration of the Oceanic Environment on a Jupiter’s Moon,” in Proceedings of the International Astronautical Congress, IAC, 2021.
[2] L. Lapierre, Underwater Robots Part I: Current Systems and Problem Pose, in: A.
Lazinica (Eds), Mobile Robots Towards New Applications, InTech, 2006, pp. 784
[3] R. Salazar, V. Fuentes, A. Abdelkefi, Classification of biological and bioinspired aquatic systems: A review, Ocean Engineering 148 (2018) 75-114.
[4] L. Ren, B. Li, G. Wei, K. Wang, Z. Song, Y. Wei, L. Ren, Q. Liu, Biology and bioinspiration of soft robotics: Actuation, sensing, and system integration, iScience 24 (2021), 103075.
[5] S. Fu, F. Wei, C. Yin, L. Yao, Y. Wang, Biomimetic soft micro-swimmers: from actuation mechanisms to applications, Biomedical Microdevices 23 (2021) 1-13.
[6] M. Calisti, G. Picardi, C. Laschi, Fundamentals of soft robot locomotion, Journal of The Royal Society Interface 14 (2017) 20170101.
[7] J. Fang, Y. Zhuang, K. Liu, Z. Chen, Z. Liu, T. Kong, J. Xu, C. Qi, A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments, Advanced Science 9 (2022) 2104347
[8] J Paredes, A. Sanchez, K. Ordonez, M. Palo, Caracterizacion de Microplasticos en los Recursos Hidrobiologicos del Lago Titicaca.
[9] F.Z. Vilca, N.C. Galarza, J.R. Tejedo, W.A.Z. Cuba, C.N.C. Quiroz, V.L. Tornisielo, Occurrence of residues of veterinary antibiotics in water, sediment and trout tissue (Oncorhynchus mykiss) in the southern area of Lake Titicaca, Peru, Journal of Great Lakes Research 47 (2021) 1219-1227
[10] H. Vargas, G. Jamanca Lino, and Y. Vasquez, “Heterogeneous UV/TiO2 photocatalysis applied to the removal of arsenic from acid mine drainage,” in Proceedings of the 21th LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2023): “Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development,” 2023.
[11] J. Aguzzi, D. Chatzievangelou, S. Marini, E. Fanelli, R. Danovaro, S. Flogel, N. Lebris, F. Juanes, F.C. De Leo, J. Del Rio, L. Thomsen, C. Costa, G. Riccobene, C. Tamburini, D. Lefevre, C. Gojak, P.M. Poulain, P. Favali, A. Griffa, A. Purser, D. Cline,
D. Edgington, J. Navarro, S. Stefanni, S. D’Hondt, I.G. Priede, R. Rountree, J.B. Company, New hightech flexible networks for the monitoring of deep-sea ecosystems, Environmental Science & Technology 53 (2019) 6616-6631.
[12] J. Andreas, G. Begus, M. M. Bronstein, R Diamant, D. Delaney, S. Gero, S. Goldwasser, D. F. Gruber, S. Haas, P. Malkin, N. Pavlov, R. Payne, G. Petri, D. Russ, P. Sharma, D. Tchernov, P. Tonnesen, A. Torralba, D. Vogt & Wood, Towards Understanding the Communication in Sperm Whales, iScience (2022).
[13] A.M. Friedlander, W. Goodell, J. Giddens, E.E. Easton, D. Wagner, Deep-sea biodiversity at the extremes of the Salas y Gomez and Nazca ridges with implications for conservation, PloS one 16 (2021) e0253213.
[14] S.M. MacKenzie, N. Neveu, A.F. Davila, J.I. Lunine, K.L. Craft, M.L. Cable, C.M. Phillips-Lander, J.D. Hofgartner, J.L. Eigenbrode, J.H. Waite Jr, C.R. Glein, R. Gold, P.J. Greenauer, K. Kirby, C. Bradburne, S.P. Kounaves, M.J. Malaska, F. Postberg, S.P. Kounaves, M.J. Malaska, F. Postberg, G.W. Patterson, C. Porco, J.I. Nunez, C. German,
J.A. Huber, C.P. McKay, J.P. de Vera, J.R. Brucato, L.J. Spilker, The Enceladus Orbilander Mission Concept: Balancing Return and Resources in the Search for Life, The Planetary Science Journal 2 (2021) 77.
[15] J.W. Sahl, N. Fairfield, J.K. Harris, D. Wettergreen, W.C. Stone, J.R. Spear, Novel microbial diversity retrieved by autonomous robotic exploration of the world's deepest
vertical phreatic sinkhole, Astrobiology 10 (2010) 201-213.
[16] W. Stone, K. Richmond, C. Flesher, B. Hogan, V. Siegel, Sub-ice Autonomous Underwater Vehicle Architectures for Ocean World Exploration and Life Search, Outer Solar System (2018) 429-541.
[17] J. Aguzzi, S. Flogel, S. Marini, L. Thomsen, J. Albiez, P. Weiss, G. Picardi, M. Calisti, S. Stefanni, L. Mirimin, F. Vecchi, C. Laschi, A. Branch, E.B. Clark, B. Foing,
A. Wedler, D. Chatzievangelou, M. Tangherlini, A. Purser, L. Dartnell, R. Danovaro, Developing technological synergies between deep-sea and space research, Elem Sci Anth 10 (2022) 00064.
[18] J.I. Lunine, Ocean worlds exploration, Acta Astronautica 131 (2017) 123-130.
[19] Conejeros Molina, Alvaro, Hueichaqueo Pichunman, Camilo, Martinez-Jimenez, Boris L., & PlaceresRemior, Arley. (2021). Monitoreo de calidad del agua en sistema de agua potable rural. Ingenieria Electronica, Automatica y Comunicaciones, 42(3), 60-70. Epub 11 de diciembre de 2021.
[20] S. Cao, H. -l. Xu, Q. -y. Jia and G. Chen, "Design of portable AUV remote control device based on MOOS-IvP," 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Chengdu, China, 2016, pp. 25-28, doi: 10.1109/CYBER.2016.7574789.
[21] M. Rahmati, S. Karten and D. Pompili, "SLAM-based Underwater Adaptive Sampling Using Autonomous Vehicles," OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1-7, doi: 10.1109/OCEANS.2018.8604552.
[22] Lighthill, M. J. (1960). Note on the swimming of slender fish. Journal of Fluid Mechanics, 9(2), 305–317. https://doi.org/10.1017/s0022112060001110
[23] Barrett, D., Grosenbaugh, M., & Triantafyllou, M. (2002). The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. Proceedings of Symposium on Autonomous Underwater Vehicle Technology.
[24] Yu, J., Wang, S., & Tan, M. (2005). A simplified propulsive model of bio-mimetic robot fish and its realization. Robotica, 23(1), 101–107. https://doi.org/10.1017/s0263574704000426
[25] Liu, L., Li, Y., Wang, Y., & Ma, X. (2020). Design and preliminary evaluation of A biomimetic underwater robot with undulating fin propulsion. IOP conference series. Materials science and engineering, 790(1), 012160. https://doi.org/10.1088/1757- 899x/790/1/012160
[26] Zhong, Y., Li, Z., & Du, R. (2018). Robot fish with two-DOF pectoral fins and a wire-driven caudal fin. Advanced Robotics: The International Journal of the Robotics Society of Japan, 32(1), 25–36. https://doi.org/10.1080/01691864.2017.1392344
The team recognizes the intellectual contributions of Arturo Alvarez Flores & Jose Napan in the creation of the concept, as it is reflected in the first publication of FISHER-X [1] . This paper was developed under the support of the ARIES Peruvian research group, a multidisciplinary team who are working on systems engineering for planetary exploration and environmental technologies. Finally, thanks to the Department of Research, Innovation, and Social Responsibility at the Universidad Privada del Norte, Peru; for the support received for the participation in SGEM 2024
conference
Proceedings of 24th International Multidisciplinary Scientific GeoConference SGEM 2024
24th International Multidisciplinary Scientific GeoConference SGEM 2024, 01 - 07 July, 2024
Proceedings Paper
STEF92 Technology
International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM
SWS Scholarly Society; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci and Arts; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; European Acad Sci, Arts and Letters; Acad Fine Arts Zagreb Croatia; Croatian Acad Sci and Arts; Acad Sci Moldova; Montenegrin Acad Sci and Arts; Georgian Acad Sci; Acad Fine Arts and Design Bratislava; Russian Acad Arts; Turkish Acad Sci.
91-102
01 - 07 July, 2024
website
9678
underwater robot, water pollution, acid mine drainage, bioinspiration, undulatory motion, FISHER-X.

25th SGEM International Conference on Earth & Planetary Sciences


International GeoConference SGEM2025
27 June - 6 July, 2025 / Albena, Bulgaria

Read More
   

SGEM Vienna GREEN "Green Science for Green Life"


Extended Scientific Sessions SGEM Vienna GREEN
3 -6 December, 2025 / Vienna, Austria

Read More
   

A scientific platform for Art-Inspired Scientists!


The Magical World Where Science meets Art
Vienna, Austria

Read More